
ISSN 0265-2919

APPLICATION : | ' |Next Week
=e 4 In our LOGO course,

THE STRAIGHT AND NARROW We aboot the osneralte the

discuss the various options available to particular with a look at LOGO
control a robot's movement sprites on the Commodore 64

© Our robotics series

H ARDWARE — with a discussion of
1 “ “

THREE OF A KIND We take the lid off oie fue cee
three portable computers to reveal the same approach to integrated
machine underneath software, we consider the

alternatives. in particular, we
look at the unique software
developed for Apple’s
Macintosh and Lisa

SYMPHONY IN SOFTWARE A look at
three integrated software packages for
business machines that provide insights into
the sort of software expected soon for home
micros | :

FFOUR-MINUTE WARNING Missile
Command, a game of nuclear war that was
an explosive success in the arcades, has
versions available for all Atari micros

DO THE LOGOMOTION Our Loco series
takes off in.a big way: we introduce you to
the ‘dynaturtle’ and present a game in which
the turtle getslostinspace — |

FORTH TO FOURTH GENERATION
A weekly glossary of computing terms

PROGRAMMING PROJECTS

WHICH BIKE? We give versions of last
week’s game for the Commodore 64
and BBC Micro |

Editor Vike Wesley, Art Director David Whelan Teetinical Editor Brian Vioris Production Editor Calherne
Cardwell Art Editor Claudia Ze Chief Sub Editor Hober! Pickering, Designer Juian Uor Ar Assistant | 7
Dixon. Editorial Assistant Sieplien Viaione, Sub Editor Sieve Viann Researcher Vieinie Davis’ Stall Writer
Steve Colwill, Contributors Geolt Bains, Harvey Mellor Vike Curtis, Sieve Colwill Uirs he Max Pips.
Steve Malone Software Consultants Pilot Software Uily. Group Art Director Perry Neviic’ Managing Director
Stephen England: Published by Orbis Publishing Lid: Editorial Director Bian pes. Project Development cle
Brookesmith, Executive Editors Vaurice Geller Cons Cooper Production Controller (ce (ayicr
Medhurst, Circulation Director David Breed. Marketing Director Vichae! Joyce, Designed ane produced by
Bunch Partworks Lid: Editorial Office 14 Raiibone Piace, London W1P 1DE, © APSIF Copenhagen 1984; © Orhis

_ Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Margan Ltd; Printed in Great Britain by Artisan
Press Ltd, Leicester

| HOME COMPUTER ADVANCED COURSE — @:ice UK 80p IR © 1.00 AUS $1.95 NZ 52 25 SA R195 SINGAPOHE S4 50
USA and CANADA 51.95
How to abtain your copies of HOME COMPUTER ADVANCED COURSE — Copies are oblalnable by b aciig a regular
order al Your newsacen!, oF Dy laking Gul a SUDSCIIDUON SUDSCIIDIIOn fales. [Or Six montis (26 issues) 125 80
fOr one yea! (52 issues) £47 60. Send your Orde! and remittance 0 Punch Subscription Services Walling oiree,
Bletchley, Millon Keynes, Bucks MK2 2BW. Deing sure {0 State ine nuiber Of ine (ai csue tequied.
Back Numbers UK and Eire - Back numbers are cbiainable from your newsagent oF from) HOME COMPUIER
ADVANCED COURSE. Back numbers Orbis Publishing Limited, 20/22 Bediordbury, LONDON WO2N 407 al cover
price. AUSTRALIA. Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE Gack juribers,
Gordon & Gotch (Aus) Lid 114 Willem Sireel PU Box /6/G Velbourne, Vic 3001 SUUIH ARICA NEW
ZEALAND, EUROPE & MALIA. Back numbers are available al cover price irom your newsagent in case cl diticully
wiite to the address in your country given ior binders. South Alrican (readers S)0uld add sales lax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE — UK and Eire: Please Send £3.95 per binge: 7 you
do not wish to take advantage of Our suecial Olfe! delaiied in issues 5 6 and / EURUPE Wilewiheniianced:
£5.00 per binder (incl p&p) payable to Orvis Publisiing Limited, 20/22 Beuiorgbury LONDON WO2N 407.
MALTA: Binders are oblainable tnrough your local newsagent price £3.95. [fn case Of Giiicully wile 10 HOME
COMPUTER ADVANCED COURSE BINDERS, Viller (Malta) Lid, M.A. Vassalli Steel, Valletia, Viaiia AUSTRALIA.
For details of how fo oblain your Dinders see inserts 1h cally sues of wie 0 HUME COVPUIER ADVANCED
COURSE BINDERS First Post Ply Lid, 23 Chandos Street, St. Leonards, NSW 2065 [fe Oinders Supplied are
those liustated in the magazing NEW ZEALAND Binders are availabe tiough your local newsacen! oF 01)
HOME COMPUTER ADVANCED COURSE BINDERS Gordon & Goich (NZ) Lic, PU Box 1595 Welingion SUIT
AFRICA: Binders are available through any Dianch of Central Newsagency |) Case 0] diticully write (9 HOME
COMPUTER ADVANCED COURSE BINDERS Iniermag -U Gox 5/394 Springield 213/.
Note — Binders and back numbers are obtainable subject to availability of siocks. Whilst every altemplis mace to
keep the price of the issues and binders constant, ie publishers reserve ie right (0 increase tle siaied Dlices ai

MACHINE CODE

RISING TO ZERO The course continues
with a discussion of the architecture and
function of the 6809’s stack registers

POWER SOURCE We show you how to.
build a mains relay box, which will allow
your computer to control house lights or a
video recorder ©

REFERENCE CARD Another valuable INSIDE
; any lime when Cicumsiances diciate. Binders depicted in iis DuDIcatlon are (nese produced (0) tie UK marcel

refer ence Car d that complements the BACK only and may nol necessarily be identical to binders produced ior sale outside te UK. Binders and issues icy be
machine code course COVER Subject to impor duty and/or jocal taxes, Which are 101 Included in ihe above prices unless ciated

COVER PHOTOGRAPHY BY PAUL CHAVE

ce een —_ eg, py

re

THE STRAIGHT
AND NARROW

Of Mice And

Mouse...
The Micro Mouse
competitions, in which robot
mice compete to negotiate a
maze, have been a valuable
source of practical knowledge

ROBOTICS/APPLICATION {°

The micro mice each have a
practice period in which to
‘learn’ the layout of the maze
by any method that does not
require external
communication, and must
then run the maze.against the

clock — the basic objective
being to reach the centre in

the shortest possible time
and technical expertise for
many amateur roboticists.

David Buckley's Quester,
shown here, carries a
comprehensive range of
Sensors (optical, sonic and

touch-sensitive)

We have already looked at the three
principal methods of robot movement (see
page 621) and shown why electric motors
are the most commonly used. Once in
motion, however, a robot needs to be made
to move where we want it to. Here we
investigate ways of controlling a robot’s
movement.

The simplest method of moving a robot around
involves using a mechanical device that ‘reads’ a
specially-shaped card inserted into the robot. The
outline of the card is followed by a small cam,
which in turn operates a series of levers to control
the robot’s direction. In the past it was possible to
buy model cars and small toy robots that operated
in this way. A program was created using a pair of
scissors to cut a card in the required shape. The
robot would move according to the jagged edge.

Other robots used devices that allowed them to
follow a set route by. means of internal
electromechanical relays. These mechanical
methods of movement control, however, were
limited in application for the simple reasons that

mechanical parts tend to be expensive and

MARCUS WILLY

relatively inaccurate. But they do provide a
precedent for contemporary methods.

One of the better methods now used involves a
robot following a track specially laid for it on the
ground. This is similar to the method used by
model racing cars,which have a guide pin inserted
into a continuous slot in a model racing track. The
two most common forms of track-following
robots, however, are those that follow a line drawn
on the ground and those that are guided by a wire.

Robots following a line do so by using a light
sensor — typically a photoelectric cell or an
infrared sensor — to determine whether the robot
is standing over a ‘light’ area or a ‘dark’ area. If the
background colour of the ground is dark and the
line is light, the output from the sensor will always
be at its highest when the sensor is directly over the
line. Therefore, if the robot always follows that
route which gives the highest electrical output
from the sensor, it will always be following the line.
There is a problem with this technique: what

does the robot do when the output from the sensor
falls, indicating that it has left the line? With a
single sensor system the best that the robot can do

THE HOME COMPUTER ADVANCED COURSE 641

: KEVIN JONES

is to wander around until the output from the
sensor rises again, showing that it is once more
over the line. Then it can continue in the direction
itis headed. This system is not quite as random as it
may appear. For example, if the robot was going
left when the output from the sensor dropped,
then it makes sense that it would turn right in an
attempt to find the line again. Also, having found
the line, it is fair for the robot to asume that the
direction it should now head in is somewhere
between the (left) course it was following when it
lost the line and the (right) course it had to follow
in order to find it again.
A system that reduces the amount of time a

‘derailed’ robot has to spend finding the night
direction again uses two sensors aimed at either
side of the line. This means that when the robot is
on the line, the output from both sensors is low. If _
the robot starts to wander off the line then the
output from one sensor will rise. This means that
the robot knows immediately that it has gone
wrong and in which direction it has made its
mistake. If the robot wandered to the right, the
output from the left-hand sensor would rise, and
the robot would take this as a signal to turn to the
left, which would bring it back on course again.

This system does not have to have a white line
on a dark background — it would work equally as
well with a dark line on a light background. What
matters is the contrast — and that the
programming tells the robot what to do when a
sensor reads an incorrect value.

The other system used for track-following
robots involves sending a small electric current
along a wire placed in the floor. This current
generates a small magnetic field around the wire,

642 THE HOME COMPUTER ADVANCED COURSE

which is detected by a sensor. This need not be a
complicated sensor — a small coil of wire will pick
up the magnetic field and produce a small voltage
that can then be amplified and will act in just the
same way as the light sensors do. Industrial robots
that need to move around often rely on a wire
buried in the ground beneath them. If they relied
on a line painted on the surface all would be well
until the floor got dirty.

REMOTE CONTROL
Another method involves a human operator
controlling the robot from a distance. This is
particularly useful in circumstances where the
tasks that the robot has to perform could be
performed just as well by a human being but the
environment is too hostile for this to be safe.

Examples of this are bomb disposal, handling.
dangerous chemicals or radioactive materials and
working in areas which are too hot, too cold or
simply too dangerous for people to work in. A
well-known robot of this type is the Russian
Lunokhod 1, which was landed on the moon by
Luna 16 in 1970. This was a robot on wheels that

collected information from the surface of the
Moon under the radio control of human beings
back on Earth.

Controlling robots of this type is little different
to controlling a radio controlled model aeroplane.
The radio signal may be either an analogue signal,
which varies in strength according to the amount
by which the robot is required to move, or it may
be a digital signal, which makes up a bit pattern
giving details of the movements to be made.
Analogue communications tend to be _ less
successful than digital methods because other

factors may interfere with the signal strength of an
analogue transmission. Try listening to a distant
radio station and notice how the reception varies
according to the time of day and the weather
conditions. The same sort of problems can affect
robot communications.

Digital methods can have problems as well,
especially when interference causes bits to be
missed out or inserted where they shouldn’t be. To
avoid this, messages to the robot are often
repeated, with the robot acting only after it has
received an identical message several times.

FEEDBACK SYSTEMS
A more sophisticated technique is to use a ‘loop’
system, in which the robot provides feedback to
the transmitter concerning the signal it has just
received. This could be regarded as a dialogue
between the transmitter and the robot. For
example, the transmitter might say ‘move forward’
and, having received this message, the robot says
‘did you say move forward?’, to which the
transmitter replies ‘yes’, and the robot then moves
forward. This can help to avoid serious mistakes it
the robot is handling nuclear waste or is about to
step into a crater on the Moon.

The same general techniques can be applied to
other means of remote control. For instance, some
robots can be controlled via infrared emitters of
the sort used in remote control devices for
television sets. Or they might be controlled by
ultrasonic sound, rather like a dog whistle, or by
audible sound of a distinctive nature, such as a
series of hand claps. Whichever method is used,
the underlying techniques of passing the message
and making sure that the robot has received it
remain the same.

If the human operator is fairly near the robot it
may not be necessary to use such sophisticated
techniques —the commands to the robot could be
transmitted through a connecting wire. There is
also the possibility of using more than one wire,
which is equivalent to having several channels ona
radio controlled aeroplane. But, in the case of the
robot, the extra wires are usually used to provide
parallel instead of serial communication (a string
of bits is sent out in parallel along all the wires
rather than as a series of pulses along one wire).
This allows faster communications with the robot.
Perhaps even more important is the fact that most
computers have a parallel port on them. This
provides a convenient way of communicating
instructions to the robot from a computer
keyboard.

If the robot movement is to be controlled by a
human operator sitting at a computer keyboard,
and the operator can see the robot, then there is
little difference in principle between controlling
the robot via a human operator and controlling the
robot via a computer. This is because, like the
radio controlled aeroplane, the operator can
always see what the robot is doing and can correct
any errors immediately. But if the robot is some
distance away (on the Moon for instance, or even

ROBOTICS/ APPLICATION

in the next room), or if the robot is to be controlled
via a program within the computer rather than by
real-time keyboard commands, then the robot
must be slightly more intelligent.

Essentially what is needed is some form of
feedback. This is a process that enables the system
to adjust what it is doing by reference to what it has
done already and to what it should be doing. For
instance, if you want a robot to travel three feet
across the floor and you are controlling it directly,
you can start it moving, judge its progress, and stop
it when it has gone three feet. This is because you
have visual feedback on the robot — you can see
how far it has gone, how far you want it go, and
you can correct its actions accordingly. —

In the absence of human sensory feedback, the
robot has to provide some of its own if it is to move
accurately. The line-following robot uses feedback
from the line it is following on the ground and,
equally, the computer-controlled robot must use
some feedback if it is to travel exactly three feet
forwards. One of the most commonly used
methods of providing the necessary feedback is a
shaft encoder — a circular disc attached to the
main axles of the robot’s wheels, which gives a very
precise measure of how far they have rotated. So, if
the computer sends instructions to the robot to
move forward three feet, the robot can start
moving and, at the same time, monitor the signals
coming from its shaft encoders to see how far the
robot has moved. If the robot has to go further it
can carry on moving. When it gets there it can stop,
and if it should happen to overshoot its mark then
it can always back up by the correct amount
calculated from the information sent from the
shaft encoders.

A Giant Leap For Robotkind
The USSR’s Lunokhod 1 was
landed on the Moon in 1970 to
collect information about the
nature of the surface and the
atmosphere. It was nota true
robot — being controlled by
radio from Earth — but its
indifference to lunar conditions
enabled the spacecraft to carry
a larger scientific payload than
would have been possible with
human passengers and their
elaborate life-support systems.

Like all remote-controlled
objects in space, Lunokhod
suffered from the three-second
lag between its transmitting
information to Earth and
receiving a control signal in
reply

THE HOME COMPUTER ADVANCED COURSE 643

Symphonic Variations
Lotus Symphony achieves its
integration by urning all of
user memory inio a giant
Worksheet and aOwing access
to (ne stored information via
various screen windows. [hese
interpret the data according to
tel program (unciion — word
processor, database,
Spreadsneel OF grapnic display.
Jhis Solves the problems of
Gaia exchange bul demands
large amounts of RAM

Graphics Display

SYMPHONY
IN SOFTWARE

In the first instalment of this series we
considered the principles behind integrated
software design. Now we look at Lotus’s
1-2-3 and Symphony, and Psion’s Xchange,
three packages that are designed for large
business systems but whose techniques will
soon be applied to lower-priced machines.

As we have already seen, integrated software
requires an environment in which the user has
instant access to all the different tasks that may be
required, where operating procedures remain the
same no matter which application is being used,
and where information may be moved freely
between different applications. There are many
different ways of achieving these aims.

Lotus 1-2-3 uses the familiar spreadsheet
format, in which figures and formulae are entered
into a matrix of ‘cells’ and can be freely amended
and instantly recalculated. However, 1-2-3 offers
many extra facilities and can be used for much
more than just financial forecasting and analysis.
The spreadsheet cells may be used to store
information such as names and_ telephone
numbers as well as numeric data, so a specific area
of the grid may be used as a table containing

Database

Word Processor

(

644 THE HOME COMPUTER ADVANCED COURSE

relevant details — for example, a list of clients and
their associated account numbers. As 1-2-3 offers
functions for searching for and reorganising such
information, this grid area may in effect be used as
a small database. It is also possible to take a set of
cells containing numeric data and use 1-2-3 to
display this information in the form of different
types of graph, thus removing the need for a
separate business graphics program. Finally,
|-2-3’s text-handling capabilities mean that it can
be used for memo writing, although memory
limitations preclude its use as a true word
processor.

This combination of different facilities means
that 1-2-3 is the only program that many users
ever need. Because all the information for
different applications is contained in a single
spreadsheet, it is easy to achieve results that would
be impossible with traditional programs. For
example, let’s assume that a 1-2-3 user operates
several different newsstands in different parts of a
large city, and needs to record weekly, monthly,
quarterly and annual sales figures for each
location. This is best done by placing the location
of each stand and its sales figures into a
spreadsheet. Formulae are written in such a way
that the only figures that must be changed by the

Symphony

Main Worksheet

user are the weekly receipts for each stand — other
figures are then adjusted automatically.

So far, this is all standard spreadsheet material, |
but what if the owner wishes to put the stands in

_ order of sales, so that the location with the highest
sales is at the top of the list? These stands would
initially be entered in alphabetical order, but will

need re-sorting each week on receipt of the new
sales figures. With Lotus 1-2-3 this may be done
quickly and easily. The newsstand owner may
require a weekly chart that shows how each stand
has performed; a sequence of keypresses will
allow this information to be retrieved for the
spreadsheet/ database, displayed i in graph form,
and printed out.

LOTUS SYMPHONY
Lotus’s follow-up to 1-2-3 is called Symphony,
and follows the same principle of basing
applications on the spreadsheet format. However,
Symphony allows the user to divide the screen
display into separate windows, each of which
focuses on a different part of the spreadsheet.
Each window is formatted in a manner
appropriate to the information it displays.

If the information to be displayed is held as text,
the window takes the form of a small word
processor screen, with margins and tab stops
clearly marked. If a graph display is required, the
window will show the labelled and scaled axes.
Database information is displayed with each entry
having its own screen; this looks like a card-index
record. So, although Symphony is really an
overgrown spreadsheet, it gives the impression of
having four major applications all onscreen and
working at the same time. |

Like 1-2-3, Symphony can ‘learn’ particular
sequences of keystrokes so that the user can
automate any operations that are carried out
frequently. The small programs that activate the
sequence are called ‘keyboard macros’. Symphony
also includes its own high-level programming
language. Programs are stored on the worksheet in
the same way as all other data, and have access to
all the operations available: so, if you have a task
such as an invoicing or stock control system, you
can write the program in Symphony’s
programming language and it will automatically
be part of all the applications in the Symphony
‘environment’. Once you are familiar with
Symphony, you will find it easier to write programs
in its command language than it is to use a separate
programming language such as Basic because
Symphony already deals with such tasks as
drawing graphs or searching for and organising
data.

Symphony is just one of several similar systems
that are now on the market. Ashton Tate’s
Framework is a strong competitor — this provides
a similar range of functions but hides its
underlying data structures to an even greater
extent. Both Symphony and Framework are
expensive (around £500 each) and require large
amounts of memory. Symphony will work with

asa ‘task’ by the supervisor,
which can maintainupto10
such tasks at any time. Making

-anexitfromonetaskgives
access — via the menu —to the -

- others. The supervisor willload
and execute the appropriate
_ application program. Data is
exchanged between one task

- and another b

320 0 Kbytes a RAM but elias requires “5 12 Kbytes
to make the most of its facilities, while Framework
needs a minimum of 256 Kbytes. As a result of
these demands, the packages will run on 16-bit
microcomputers only. :

Interestingly, neither Symphony nor
Framework requires information or portions of
program to be swapped between disks and main
memory, as is the case with most business
programs. In theory, of course, computer memory
continues to become cheaper and cheaper, so it is
not unreasonable for software developers to
assume that most users will have large amounts
available. In practice, however, this is not yet the
case and it will be some time before such memory-
intensive integration becomes commonplace.
Although a program such as Symphony sets new
standards of performance, such software is still

— constrained by hardware limitations — it’s only by
being such a large, carefully crafted program that
Symphony manages the things it does.
An alternative method of providing integrated

software has been developed over the last 20
years, and packages that use this method are now
starting to appear on the market. In the next |
instalment we will consider possible future
developments in integrated software.

_ THE HOME COMPUTER ADVANCED COURSE 645 -

POWER SOURCE

Our Workshop series continues with an

explanation of how to build a mains relay
box. Using this, your computer will be able
to switch the house lights on and off at.
preset or random intervals, and can be used
to) program a video or audio recorder.

Electrical relays are on/off.switches that can be |
activated by an electrical signal. In our
application, relays are used to switch high voltage
and current appliances using a low voltage and
current signal. Many types of relay are available,
but the most common is the armature-type, which
relies on a solenoid to make and _ break
connections.

The relay cakes and mae contacts under the
action of small movements in the armature. An
appropriate voltage applied to the solenoid coil
generates a magnetic field that attracts the
armature. As the armature swings in towards the
coil the spring contacts attached to the other end
of the armature are made to move vertically
upwards. |
The arrangement shown isin the‘non-energised’

position; that is, with no voltage applied to the
solenoid. In this position, the contact pair AB is
open and the pair CDis closed. When the solenoid

Is energised, springs B and C move upwards,
causing A and B to close and C and D to open.
This arrangement can be used in one of two ways:
either to switch in one circuit whilst switching out
another, or, more simply, to complete or break a
circuit.

646 THE HOME COMPUTER ADVANCED COURSE
EL,

In addition to this mode of operation, a relay
can also act as a transfer mechanism. In the
diagram the lower three springs are arranged so
that — in the non-energised position — the top and
bottom springs are in contact. When the solenoid .

is energised, the middle spring moves up and
makes contact with the top spring, thus breaking
the contact between the top and bottom springs.

Inside The Box
Check all connections for security and continuity,
and inspect the board once again for track bridging.
Ensure that there is no electrical path between the
mains lead and the signal lines.

Glue the board into a corner of the pattress using
an epoxy resin glue. Some makes of all-purpose
household glues conduct electricity, so avoid these
at all costs. If you are unsure of the conducting
properties of your chosen adhesive, try spreading a
thin strip of glue on a piece of card, allow it to dry,
and then connect a multimeter to each end: if the
meter gives a reading, use a different glue!

Once the glue has dried, screw the lid on the box
and put the 4mm plugs on the signal lines (these
can be the same colour, as the relay will work
despite the direction of the current). Now connect
the 13 amp plug to the mains lead. The relay is rated
at 10 amps, but for safety you should probably not
switch any more than 5 amps through it, so puta5
amp fuse in the plug: this allows you to cia
appliances rated at up to 1.2 kW.

The Circuit Board
Cut the board to the shape shown, so that it will fit snugly into
one corner of the pattress box. Make the track cuts, and solder in
the relay as Shown in the diagram.
Check the board very carefully before you go any further. —
Use the multimeter to check for bridging between tracks — a
mistake here could kill!
Solder the brown mains lead and the two-way ribbon cable into
place on the board. Remove one of the pre-formed slots in the
pattress to accept the wires; but tie a knot in these before
threading them through — the knot will prevent an accidental
pull on the wires from damaging the board. Solder a short length
of insulated mains conductor to the board, and connect this to
the ‘live’ screw terminal on the socket. Connect the blue and
yellow/green mains leads to the neutral and earth terminals
respectively

Block Diagram
Just as the buffer box isolates the computer from _
the low voltage currents that are switched by the
output box, sothis relay box willisolatethe _

- computer from the mains supply. The computer ~
sends current through a mains relay, which then
switches the mains power on or off. The only
connection between the mains supply and the
computer is the magnetic field in the relay. —

THE HOME COMPUTER ADVANCED COURSE 647

*
¥

+
x

%
%
= alsa nae sees

oo THEN NEXT
“THEN | UNTIL FALSE

oe, fants, Soran oe Se

mo “26: : READ MSC K) :NEXT fe

3820 DEFPROCDeept lash
ioe helene h a

3240 2DATREG=1 _ PREM’ FLASH
: 3260 ‘SOUND 2 15, 208, D REM BEEP

“REM. “FLASH

LL. ee 57:REM BEEP _ 320 a 2DATRI [Gag ee

WW, 33° FOR pee L 1p Cree 3300 PROCde lay (DE*IX)
 -_ se ~~ ~C 3320 NEXT C_

teen UBER? =| «S| eaee ENOPROC|6U™U™C™C™C~ét~—S
REM UNFLASH © 4060 REMA= sax exDELAY sata caxannenees

4180 DEFPROCdel ay< time)
4200 FOR bo-1 10 time: NEXT DD

ane ‘ENDPROC

se _ a ‘

4

FORTH
ForTH was invented by astronomer Charles
Moore in 1972 when he became dissatisfied with
FORTRAN as a language in which to write telescope
control programs. The specialised functions that
he needed were difficult to write in FORTRAN
because its structure and processes were too
strongly oriented towards that language's
scientific/mathematical purposes. Accordingly,
he designed FORTH as a dictionary of primitives—
the elementary functions of the language — and an
editor/compiler/interpreter.

The editor is used to define new functions as
expressions (or ‘subroutines’) created from the
existing dictionary; the new functions are named
and compiled, and thus added to the language. A
function can be executed at any time through the
interpreter by simply issuing its name as a
command. Fortn treats all of user memory as one
big Last In First Out (LIFO) stack, while program
memory is a series of independent stacks (one per
function) of machine code subroutine addresses.
A function is executed by jumping to the first
address on its program stack, popping any needed
values off the main stack, pushing any results back
onto the stack, and exiting to the next stacked
address, until execution is complete. Arithmetic
expressions are, therefore, written in reverse
Polish — or postfix — notation (operands are
grouped together and followed by their operators;
thus A+B*C is written B C A * +) because this is a
stacked-oriented notation.

Programming in FORTH, then, really consists of
developing a customised version of the language
to suit each application. The language’s chief
virtues are its ‘extensibility and speed of
operation . Because of its extensibility and because
it brings the user closer to the computer’s
operations than is normal with high-level
languages, FORTH has been acclaimed as a
replacement for BAsic but, although it is available
in various versions for most micros, only one —
the now-defunct Jupiter Ace —has_ been
manufactured with FORTH rather than BASIC as its
resident language.

FORTRAN
Developed by IBM in 1956, rortTRAN (derived
from FORmula TRANSslation) was the first
commercially available high-level language. It had

two main purposes: to demonstrate that high-
level, quasi-English programming languages
could be compiled quickly and efficiently, and to
make computers more generally accessible to
scientists and engineers who might be prepared to

learn a language rather like the algebraic
expressions in which they formulated their ideas,
but who had neither the time nor the patience to
learn machine code. In both of these aims FORTRAN
has been enormously successful; it is still the most
widely used of the high-level languages, and a new
version is due in the late 1980s. Several versions
are also available for microcomputers.

An important early development was the ability
to create system libraries of independently-
compiled FORTRAN subroutines: all mainframe
systems have such libraries, and so important a
resource are they that other languages — such as
PASCAL — are configured so that they can call
FORTRAN routines from the libraries.

ForTRAN’S legacy is the group of languages
descending from it—chiefly ALGOL, PASCAL and
BASIc—but its true historical ‘significance is
probably that it enabled computers to move out of
university computing laboratories and into the
classrooms and workshops, where they could
become taken for granted as everyday scientific
equipment. From there it was a short step into.
offices and homes. FORTRAN brought computing
within the reach of the non-specialist, and was
perhaps, therefore, the first step on the road to
user-friendliness.

FOURTH GENERATION
A generation in the development of computers
seems to span about ten years, and begins with the
development of an expensive new technology
which is commonplace by the end of that period.
The first generation began in the late 1940s with
the first stored-program thermionic valve
machines; the second generation machines
appeared in the late 1950s and used discrete
transistor logic; the third generation — typified by
the IBM 360 — began in the early 1960s with
integrated families of machines and
comprehensive operating systems; and the fourth
generation appeared in the early 1970s with the
introduction of Large Scale and Very Large Scale
Integration (LSI and VLSI) chip circuitry. As
such, it includes mainframe, mini and
microcomputers. Micros have themselves gone |
through several stages of development to arrive in
the middle 1980s as credible small-scale
‘computers, supporting fourth generation features —
such as large memories (one megabyte or more),
networking, multi-tasking and _ integrated
software.

The fifth generation is expected to appear in the
- late 1980s. Its characteristic features are likely to
be natural-language programming, speech
recognition and generation, and a degree of
artificial intelligence in its operating systems and
applications software; it will probably be
developed in Japan.

THE HOME COMPUTER ADVANCED COURSE 649

_. HARDWARE/TANDY MODEL 100 —

THREE OF |
AAKIND ©

As a result of the ever-growing demand for
‘computing on the move’, manufacturers are
concentrating on the lucrative portable
computer market. Here, we take a look at
one of these ‘lap-held’ machines — the
Tandy Model 100 — and compare it with
two, essentially similar, competitors.

The process whereby a manufacturer buys a
completed product, changes a few elements to
make it look unique, then repackages it as a
‘custom manufactured’ item, is known as ‘badge
engineering’. This technique has existed for a long
time in the consumer electronics field, with
products such as televisions and hi-fi equipment.
The same technique is now being used in the
computer market, and three popular portable
computers — the Tandy Model 100, the NEC
PC8201A and the Olivetti M10 — are the result of
just such an arrangement. All three machines are
manufactured by the same company, the Japanese
Kyocera firm, and are sold to Tandy, NEC and
Olivetti, who package the machines and market
them under their own labels. Here, we consider
the Tandy Model 100, and highlight the
differences between this machine and its siblings.

Weighing slightly less than 1.8 kg (4 Ib), the
Tandy, NEC and Olivetti models fall comfortably
into the ‘lap-held’ category. The Model 100 has a
full QWERTY-style keyboard, built-in ROM-
based software and a battery-operated LCD
screen. It can be run entirely on battery power and
the contents of RAM are not lost when the
machine is switched off. Files may be stored in
RAM and accessed directly as if the memory were
a cassette or disk. The Model 100 may also be
connected to a cassette or disk drive for external
storage, but the permanent memory makes it easy
to store important data ‘on the run’. ,

The LCD screen provides eight lines of 40
characters, and has the ability to mix text and
graphics. The display is composed of 15,360 dots,
each of which may be addressed individually.
Characters are formed in a 6 by 8 matrix, and
upper; and lower-case characters may be
displayed. The Model 100 features a full
international character set, as well as a special set
of graphics characters, unlike the NEC machine,

_ which has only three graphics characters. Both the
_ NECand Tandy models have LCD screens that lie

flat in their cases, but the Olivetti M10 features a
movable screen that can be tilted to a comfortable
working angle, thus providing extra flexibility. The
NEC and Tandy screens have adjustable contrast
controls to improve screen clarity.

650 THE HOME COMPUTER ADVANCED COURSE

Parallel Printer Connector -——_______ :

Cassette Interface

Bar Code Reader

CPU
The CPU is a GMOS 8-bit
80085 chip, which consumes
very little power

Expansion RAM
The Tandy 100 can be
expanded to 32K RAM
internally by installing
additional RAM chips here

NEC PC8201A
Although the NEC PC8201A is exactly the same size as its
siblings, this machine has a significantly different keyboard. The
cursor keys have been moved out into a small cluster, the
function keys have been reduced from 8 to 5, and the keyboard
layout is slightly different. In addition, the NEC has only three of
the standard programs in ROM: Text, Schedule and lelecom

Modem Connector
This is a standard RS232
serial communications port.
Telecommunications software

is built into the machine

Power Supply
The Model 100 runs for up to
20 hours on 4 AA alkaline
batteries. Internal memory Is
maintained for up to 30 days
by rechargeable nickel-
cadmium batteries, which are
automatically recharged when
ithe power Is on

Standard ROM
This chip contains the built-in
Microsoft BASIC and software

LCD Connector
Aribbon cable connects the

LCD sereen to the system
board here

System Bus and ROM Slots
These empty slots are for
future expansion of the
system’s ROM, and input/
output control

Standard 8K RAM

Keyboard Unit
These chips control the input
and output of the keyboard, | Olivetti M10

and contain the character sets The Olivetti version of this machine has one interesting touch
: unique to itself: the LCD screen can tilt up to an angle of about

40° — making the display somewhat easier to read. It has
essentially the same keyboard as the Tandy 100, however, and all
five standard ROM-based software packages

THE HOME COMPUTER ADVANCED COURSE 651

Chips Off The Old Block
Although distributed by three
different companies, the Tandy
Model 100, Olivetti M10 and NEC
PC8201A are all manufactured
by the same Japanese company,
Kyocera. There are some small
differences between the three
machines, but even an untrained
eyecanseethatthethree «
portable computers share a
common heritage .

The Tandy’s high-quality keyboard features.
special keys to access the built-in graphics or to
change several of the letter keys into a numeric
keypad. Using this facility, key M becomes 0; J, K
and L become 1, 2 and 3; U, Iand O become 45
and 6; and 7, 8 and 9 retain their normal function.
All three machines have four cursor keys, but the
position of these varies. The Tandy and Olivetti
models have four small keys side by side, located
above and to the right of the regular keyboard; the
NEC PC8210A has a cursor pad, with the four
cursor keys forming a square.
The machines also feature programmable

function keys, which are used with the built-in
software to manage file-handling functions and
movement within and between the programs held
in ROM. Again, there are differences here.
Tandy’s Model 100 has eight function Keys, plus
four additional keys that are used to perform
internal tasks. PASTE is used to move data from one
program to another; LABEL assigns names to the
function keys so the user always knows what each
function key does; PRINT sends files directly to the
printer; and the BREAK key halts program
execution. This layout is repeated on the Olivetti
M10, but the NEC PC8201A has five function
keys, programmable for a total of 10 functions,
and a Pause key.

MEMORY CAPACITIES
The Model 100 and the M10 are supplied with
either eight Kbytes or 24 Kbytes of RAM and this
can be expanded to 32 Kbytes with the addition of
an internal RAM pack. The NEC is slightly
different: this is supplied with 16 Kbytes, but may
be expanded to 64 Kbytes internally, or 96 Kbytes
if the built-in expansion port is utilised.

652. THE HOME COMPUTER ADVANCED COURSE

IAN McKINNELL

The Model 100 comes with Microsoft BAsic and |

a small ‘housekeeping’ system that manages the
internal software. On power-up, the files stored in
memory are displayed, along with the titles of the
supplied internal software programs.

Supplied programs include Text, a small word
processor that is suitable for drafting memos or
writing letters or short reports; this is especially
suitable for note-taking, and should be a boon to
journalists, students or business users. Schedule is
a small database program, specifically designed to
help you keep track of appointments, expenses,
‘things to do’ and other reminders. A _ built-in
search function makes it easy to find information
quickly. A third program, called Address, is a
similar small database and appears unnecessary as
Schedule is available. Finally, there is an RS232-
based communications program called Telecom,
which allows the Model 100 to be connected to a
modem for telephone communications — with a
few keystrokes, data can be sent to or received
from remote computers. The NEC PC8201A
comes with only sAsic, Text and Telecom.

All three machines are well equipped with
interfaces, each possessing an RS232
communications port, a parallel printer port,
cassette interface, and a socket for a bar-code
reader. The Tandy and Olivetti models include a
system bus, while the NEC adds two extra serial
ports to its list of interfaces.

The use of one basic machine, with slight
differences between the three different models,
has meant that the manufacturers can provide
high-quality products without any one company
having to shoulder the full development costs. At a
cost of around £450 for the basic versions, all three
of these lap-helds offer good value for money.

BASIC GAME/PROGRAMMING PROJECTS

WHICH BIKEP

In the last instalment we gave you a BASIC
program for a motorcycle game on the ZX
Spectrum (see page 632). Here we provide
versions of the same game for two other
machines — the Commodore 64 and the
BBC Micro.

Unlike the versions of Basic used by the Spectrum
and BBC, Commodore 64 BAsic doesnt have any
commands that allow us to plot individual pixels.
In the version of the game we give here, we use low
resolution characters to draw the path of the ‘light
cycles’. A reverse-field space character, with POKE
code 160, is used: to plot this character to the
screen we have to POKE this value to the screen
map in memory and specify the colour in the
corresponding location in the colour map.

Like the Spectrum version, the Commodore
game is unstructured for maximum speed of
execution. At those points in the game where
speed is unimportant, such as after a collision,
some structuring is introduced in the way of

subroutine calls to increment the score and flash
the screen.

Because BBC Basic runs considerably faster
than Spectrum or Commodore sasic, and allows
structured modules to be called as procedures, the
BBC version of the game is written in a highly
structured way. Most versions of Basic allow
structuring by using subroutines, but this slows
down execution speed because a search must be
made each time a subroutine is called. BBC Basic,
however, makes a note of the location of a
procedure when it is first called, and stores this in a
reference table.

KEVIN JONES

DO THE 1

LOGOMOTION
In this instalment of our LOGO course, we
will develop a simple game in which the
turtle gets lost in space. To do this, we will
first need to look more closely at various
input and output methods.

in our ‘Space Turtle’ game, the turtle is stranded in
the depths of space, a long distance from its base,
to which it must return. The game will require us to
print various messages on the screen. The
necessary command for this is, not surprisingly,
PRINT. Once a message has been printed, the
cursor is moved to the beginning of the next line.

To print a single word, PRINT is followed by the
word itself — thus, PRINT “HELLO prints the word
‘HELLO’ on the screen. PRINT “is used to print the
‘null word’ (a ‘word’ that has no characters). The
effect of this command is simply to print a blank
line. If more than one word is to be printed, the text
is enclosed in square brackets to indicate that it
forms a list:

PRINT [YOUR TIME HAS RUN OUT]

PRINT is also used to display the contents of a
variable, so PRINT :SCORE will take the value held in
the variable “SCORE and display it. Messages and

a

ee
ee

THE HOME COMPUTER ADVANCED COURSE

variable values may be combined in the same
PRINT statement by enclosing the complete
instruction in round brackets, as in:

(PRINT [YOUR SCORE WAS] :SCORE)
PRINT1 behaves in exactly the same fashion as
PRINT does, except that in this case the cursor will
remain at the end of the printed text and will not be
moved to the next line. This can be demonstrated
by entering: — |

PRINT1 [WHAT IS YOUR NAME?]

OUTPUT OPERATIONS —
Loco commands, such as HIDETURTLE or PRINT,
cause something to happen — they may be said to
have an effect on the turtle. However, other LoGo
primitives — XCOR, for example — do not have an
effect, but instead output a value. This value is
then normally used as the input to a command. So,
for example, typing:

PRINT XCOR

would cause XCOR to output the value
corresponding to the turtle’s current x co-ordinate
to the command PRINT, which then displays the
result. Thus, if the current value of XCOR is 20,
PRINT XCOR will cause the number 20 to appear on
the screen. If XCOR is typed on its own, the message
RESULT: 20 will appear. This is actually an error
message (LCSI versions are somewhat less polite
and would print YOU DON’T SAY WHAT TO DO WITH
20). | |
he procedures we' have so far written have all

been commands. To create operations we must
make use of the primitive OUTPUT. As a simple
example, here’s a procedure that outputs the
distance of the turtle from the origin; this
procedure uses SQRT to return the square root of a
number:

TO DISTANCE
OUTPUT SQRT (XCOR*XCOR + YCOR*YCOR) -

END
Try moving the turtle to different screen positious
and use DISTANCE to determine how far it is from
the origin. For example, SETXY 30 40 PRINT
DISTANCE should give the answer 50. oe
When Loco executes an OUTPUT instruction it

stops running the current procedure, returning
control to the procedure that called it. This can be
seen in the procedure MAX, which outputs the
larger of two numbers: _

TO MAX :X:¥
IF :X => :¥ THEN OUTPUT :X
OUTPUT :Y_ | Se | 3

END

a

PRINT MAX 6 2 will give 6 as a result. Try writing a
procedure to give the absolute value of a number,
so that PRINT ABS 4 and PRINT ABS (-4) will both
return the value 4.

Our game will ask you to type in your name and
press Return. Here is a procedure to do this:

TO GET.NAME
SPLITSCREEN
PRINT1 [WHAT IS YOUR NAME?]
MAKE “NAME FIRST REQUEST

_ (PRINT “HELLO :NAME) ©
END

REQUEST ¥ waits for a line to be spel in and —
terminated with a Return. It then outputs the line
as a list. FIRST outputs the first element of a list. Try
the GET.NAME procedure and type in ‘Holly’ as the
name. Now see what happens if ‘Holly Johnson’ is
used as an input.

The game will control the turtle’s onscreen
movement by using the keys R, L and K. R will
turn the turtle clockwise (right) through - 30
degrees; L will turn it anticlockwise (left) by the

- Same amount; while K is used to ‘kick’ the turtle —
increasing its speed in whatever direction it is
currently facing. The turtle will be moving around
the screen, and we will require it to respond
immediately to these keys. It would be a help if
there was a LOGO primitive — READKEY, perhaps —
that would output the last key that was pressed. If _
this was the case, we could write:

TO COMMAND
MAKE “COM READKEY |
IF :COM = “R THEN RIGHT 30
IF :COM = “L THEN LEFT 30
IF :COM = “K THEN KICK

END |

Unfortunately, this primitive does not exist!
However, we can write it as a Pas thus:

TO READKEY
IF RC? THEN OUTPUT READCHARACTER
OUTPUT “ :

END

When a key is pressed it is stored in the keyboard
buffer. READCHARACTER simply outputs the last
character from the buffer — if the buffer is empty
READCHARACTER will wait for a key to be pressed
and then output the relevant character. RC? is true
if the buffer contains any characters and is false if
the buffer is empty. So READKEY will now output

_ the last character’ in the buffer, or will output a
null word if the buffer is empty.

THE DYNATURTLE |
Our space-going turtle is in fact a dynaturtle. This
is a turtle that has a velocity, as well as a position
and a heading like any normal earthbound turtle.
The dynaturtle is in space, so there is no friction
and no gravity. The dynaturtle will obey Newton's
laws of motion. Our illustration will make this

clearer, but as an example, let us assume that the
dynaturtle is moving left to right across the screen
with a velocity of 1. If the L key is pressed, the

velocity 1, and the dynaturtle will move diagonally

dynaturtle will turn to face the top of the screen,
but the turtle’s momentum will keep it moving on
its horizontal course. If K is then pressed, the
dynaturtle will get a ‘kick’ in the direction in which
it is facing. This results in a push up the screen of

aCTOSS the screen with a velocity of 1.4. The
dynaturtle will allow you to experiment with a
body that obeys Newton’s laws; it is designed to
allow you to develop an intuitive understanding of
these laws without you needing to understand all
the relevant equations.

In the program, the dynaturtle’s velocity is
considered in terms of two components along the
x and y axes. These components are found by
using the SIN and COS functions. The only game _—
controls are the three already mentioned. To begin Frtatemesinal Tirlie
the game, just type START. You have a fixed time in cc ae ede and ‘he
which to reach your goal, and the program keeps a target (its home base) only. The
record of the best score to date. __ stars and planets shown here

: 3 : were added using some simple
Circle procedures

IAN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 655

Exercise Answers
1. Nested triangles
TO TRI ‘SIZE :LEVEL

- |F-LEVEL = 0 THEN REPEAT 3 [FD :SIZE RT 120] on OUTPUT
SUP END

TRI (:SIZE/2) (:LEVEL —1) Space Turtle Prog a
FD (:SIZE / 2) : TOKICK * cin HEADING
TRI (:SIZE/ 2) (:LEVEL — 1) TOS yo. MAKE “XVEL + 3° SI HEADING
RT 60 Tai MAKE “YVEL + 3" COS
TRI (-SIZE/2) (-LEVEL —1) MAKE “BES! END - : : AW FD (:SIZE/2) DR
RT 60 : ect 70 Luan _XVEL

TRI (:SIZE/2) (:LEVEL—1) : SETXY X a

BK (:SIZE/2) c END
L760

; TO TARGET TANCE

nee ae PU SETXY 05 PD . ae SORT cor * YCOR)
RT oP at 36 {ED 31-4/36 RT 101 (XCOR * XCOR + ¥

2. Square snowflake REPEAT 38 END — | PU TO SNOW 1:SIZE:LEVEL |
REPEAT 4 [SIDE1 -SIZE LEVEL RT 90] END 10 aie

END 0 PLAY EN
TO SIDE1 :SIZE :LEVEL oy GETNAME rahe DONE] NAME)

IF LEVEL = 0 THEN FD :SIZE STOP INIT FINT (YOUR SCORE WAS]
SIDE! (SIZE /3) (:LEVEL — 1) DRIVE. CORE)

ae (-SIZE/3) (LEVEL —1) NT REPORT
RT90 0 GET.NAME AGAIN
SIDE1 (:SIZE/3) (:LEVEL—1) SPLITSCREEN «YOUR NAME? END

RT 90 PRINT Ne FIRST REQUEST 70 REPORT N MAKE
SIDE1 (:SIZE/3) (:LEVEL — 1) MAKE “NAM e SCORE > -MAX THEN NAME
LT 90 END MAX :SCORE MAKE "BE?"
SIDE (:SIZE/3) (-LEVEL—1) ANT! BEST

END TO INIT on PRINT (HIGH SCORER ISI :
MAKE “SCORE 2° Pee MAX (POINTS!)

3. Curve with no gradient at any point SETXY 100 100 (WITH) : M

TO W:XSTEP :YSTEP :LEVEL SEIN 279 : END
WUP :XSTEP :YSTEP :LEVEL MAKE © |

| WDOWN :XSTEP:YSTEP :LEVEL MAKE “YVEL 0 T0 eae [ANOTHER 607]
END — E\VLLSCREEN FAKE “ANS FIRST REQUES!

TO WUP :XSTEP :YSTEP :LEVEL. IF-ANS ~ "YES THEN AEP LE\ 0 no
IF ‘LEVEL = € THEN SETXY (XCOR +:XSTEP) > STOF _ _ «no THEN STOP -

(YCOR +:YSTEP) STOP 70 DRIVE : oe MAKE YOUR MIND UP,
WUP (:XSTEP/6) (:YSTEP/2) (:LEVEL — 1) COMMAND PRI en |
WDOWN (:XSTEP/6) (:YSTEP/ 2) (:LEVEL — 1) YNA.MOVE eg THEN DONE STOP ane ,

WOE Se ae} | | eee oO : -LEVEL — MA TOF
WDOWN (:XSTEP/6) (:YSTEP /2) (‘LEVEL — 1) iF SCORE - 0 THEN OY 5 OUTOR-TIME
WUP (:XSTEP/6) (:YSTEP/2) (:LEVEL — 1) STOP / PRINT’ }

END | DRIVE EEN SpLITSCR RUN OUTI , TIME HAS
TO WOOWN :XSTEP :YSTEP :LEVEL END paint (YO

IF :LEVEL =0 THEN SETXY (XCOR + :XSTEP) 0 COMMAND, Le fs
(YCOR — :YSTEP) STOP MAKE “© HT 30

WDOWN (:XSTEP/6) (:YSTEP /2) (: LEVEL —1) iE COM = we Seek REPLAY
WUP (:XSTEP/6) (:YSTEP/2) (:LEVEL — 1) iF -COM = “LTHE NY KICK 10 Y
WDOWN (:XSTEP/6) (:YSTEP /2) (:LEVEL —1) iF -COM = “KTHE GETNAME
WDOWN (:XSTEP/6) (:YSTEP/2) (:LEVEL — 1) END o

 WUP (:XSTEP/6) (:YSTEP/2) (: LEVEL—1) ae ARIVE
WDOWN (:XSTEP/6) (:YSTEP/2) (:LEVEL —1 ADKEY Fl)\) 10 ate THEN OUTPUT END

656 THE HOME COMPUTER ADVANCED COURSE

er
e

READCHARACTER

We have now had a fairly thorough look at
the addressing modes available on the 6809
processor, particularly the use of indirect
addressing. There are still some variations
we will need to discuss in more detail in the
course, most notably the use of the program
counter in indexing. For the moment, let’s
take a closer look at how the stacks are used.

So far in the course, we have used the two stack
pointer registers, S and U, only as extra index
registers. The use of the so-called ‘hardware stack’
for the storage of return addresses on subroutine
calls has also been mentioned, although only in
passing. Now we need to backtrack a little and
consider the architecture of a stack, and the way it
is used. |
A stack is a special instance of a more general

type of data arrangement known as a Jist. You
should be familiar with the everyday idea of a list,
even if you know little about the increasingly
popular list processing languages, such as Lisp and
Loco. A list is simply a sequence of data items.
This sequence can be arranged in an order
determined by some property of the data (for
example, a series of numbers in numerical order,
or a string of characters in alphabetical order), or it
can be a random arrangement determined by the
order in which data items were added to the list.
With all of these lists it is sensible to attach
significance to the identity or value of the ‘next’ or
the ‘previous’ item in the list, and particularly to
the list’s first item (known as its ‘head’) and its last
item (the ‘tail’).

One important feature of a list is that it is a
dynamic data structure; that is to say, items of data
can be added to, or taken from, the list at will. Ina
general list, data can be added or removed at any
position in the list. The particular restriction that
specifies that a given list is a stack is that data can
be added to, or taken from, a stack only at one end.
Each new item added to a stack becomes the
‘listhead’, and only this can be removed from it.

The name itself gives a good idea of the way a
stack operates. Consider a stack of plates in a
canteen: as a plate is needed it is taken from the
top, and clean plates are put only on the top of the
stack. You could add plates to, or take them from,
the middle of the stack, but this would be
unnecessarily problematic. It is possible, however,
to inspect an item anywhere in the stack. |

There are two extreme situations that can arise
when a stack is operating: either the stack becomes
empty, which is no problem if the next stack
operation adds an item to it, but could be awkward

otherwise; or alternatively, the stack could fill to
overflowing. This second situation can be better |
visualised if we consider our stack of plates in a
canteen: there would come a point where the stack

THE HOME COMPUTER ADVANCED COURSE 657

Push Off
The 6809 stack pointer always
addresses the ‘top’ of the stack
— that is, the byte most recently
written to. When a PSHS X is
executed, therefore, S is
decremented by two, so that it
points to the new stacktop, and
the contents of X (a two-byte
register) are then written at that
address in hi-lo format. Notice
that the stack ‘rises to zero’ —
the stack pointer points to lower
locations in memory as the
stack grows

Pull Together
When PULS X is executed,
the contentsjof the two bytes at
the current stack pointer
address are copied to X, and S
is then incremented by two to
point to the new stacktop

Push Off Together
When a multiple-register stack

_ operation is executed, the
registers involved are accessed
ina pre-determined order —
PC,U or S,Y,X,DP,B,A,CC.
When PSHS X,Y,U,A is
executed, therefore, the
contents of U are stacked first, -
followed by Y, X andA

658 THE HOME COMPUTER ADVANCED COURSE

MACHINE CODE/6809 CODE

LIZ DIXON

of plates reached the ceiling, and no more could be
added to it. : |

Stacks in computers work in much the same
way. The two operations of adding and removing
items are known as pushing and pulling (or
popping), respectively. The two extreme situations
we have just mentioned are referred to as
underflow and overflow.

Stacks can be implemented in a number of ways
(using arrays in a BASIC program, for example), but
the method that we are considering requires a
block of available memory and a register that we
can designate the stack pointer. This pointer is
necessary to keep track of the current location of
the listhead. Unlike a stack of plates, a memory
stack cannot be assessed by inspection since there
is nothing to distinguish a memory location
containing an item of stack data from the next
location, which may not be part of the stack. It’s
worthwhile pointing out that, just as data is not
really ‘loaded’ from memory into a register but
only copied, so similarly items are not really
‘pulled’ off a stack — only the pointer to the top of
the stack is changed.

The stack pointer, therefore, contains the
address of the current top of the stack. There are
two variations possible here: the stack pointer can
give either the address of the next free location
where data can be stored, or it can give the address
of the last item of data stored in the stack. This
latter is the convention used by the 6809
processor, although there is no_ particular
advantage in this over the former method — other
processors use that technique just as readily.

A significant difference of organisation
between a memory stack and a stack of plates in a
canteen is that the former grows downwards in the
6809 system: as more items are pushed onto the
stack, the stack pointer address gets lower and
lower—it is said to ‘rise towards zero’.

STACK OPERATIONS
The two 6809 stack operations are represented by
the instructions PSH, to push data onto the stack,
and PUL, to pull it off. These operations can be
applied to either of the two pointers, S and U, so we
have PSHS, PULS, PSHU and PULU. The data that is
operated on must come from, or go to, a register,
although a number of registers can be pushed or
pulled in one instruction.

The instruction PSHS X will have the effect of
first decrementing S, the stack pointer, by two (or
one if an eight-bit register is pushed) to give the
address of the next free stack location, and second
storing the contents of X at that address. The first
diagram illustrates this procedure. Notice again
the 6809 hi-lo addressing convention: the hi-byte
(S3A) of X is stored at SOOFE , a lower position in
memory than the lo-byte ($24), which is stored at
SOOFF. If you use an assembler, these details of
whether stack pointers increment or decrement
are irrelevant — the assembler does all the
memory management necessary. |

The instruction PULS X has the opposite effect:

ee

the 16-bit value at the address currently in S is
loaded into X, and the contents of S are then
incremented by two. _ second diagram shows
these changes.

More than one register can be pushed or pulled
at a time. Consider the instruction:

PSHS X,Y,U,A

When more than one register is pushed like this,
the order in which the registers are listed is ignored,
and instead the registers are always pushed in this
order: PC (the program counter register), U or S, Y,
X, DP (the direct page register), B, A and CC (the
condition code register). They will, of course, be
pulled off in the reverse order. The only real
constraint on stack operations is that neither S nor
U can be pushed onto its own stack.
The stacks are used in general programming as

convenient places for fast, temporary storage, but
their major uses come when dealing with
interrupts (more about these later in the course)
and subroutines. We have already seen how the
contents of the program counter register are

- automatically pushed onto the stack when a
subroutine is called, and pulled on return from the
subroutine (RTS is equivalent to PULS PC). Either
stack, but particularly $, can also be used to pass
parameters to a subroutine.

The method we have used so far for passing
parameters via the registers (as in the Jump Table
program on page 639) has two major weaknesses.
First of all, there may be more parameters to pass
than there are registers, and, secondly, it can prove
awkward when the routine called uses a register
holding a parameter that you need to retain. There
are, however, two other common techniques for
passing parameters:

1) The data can be stored in the middle of the
program by using FCB, FDB or FCC directives
immediately after the subroutine call. The value of
the program counter register pushed onto the ©
stack by the JSR instruction gives the address of the
first of these values (since PC always points to the
next byte after the current instruction), and can be
used to obtain all of them, with suitable offsets.
The first example program illustrates this
technique. Care must be taken to arrange the RTS.
instruction so that it passes control to a real
instruction, and not to an item of data.
2) The data can be loaded into registers and
pushed onto the stack before the subroutine call,

_ from which it can be pulled into the subroutine and
used. Care must be taken here that, at the RTS
instruction, the stack pointer will access the
previously stacked PC return address. The second
piece of code illustrates this technique. This is
generally a more useful method than the first.

In both methods, the dual role of S and U as
index registers as well as stack pointers means that
items on the stack can be referenced by indexed
addressing in addition to being easily accessed for
removal from the stack. This makes it easier to
ensure that the correct items are left on the stack
for the return.

THE HOME COMPUTER ADVANCED COURSE 659

¢
(songe

signed,
aranteed to send
“of anti-nuclear

he consists of
ation against waves of

ulti le-war ead nuclear missiles.
caine

The success a a game designed kon an see
arcade oftens depends on the persuasiveness of its
‘attract’ mode (the display that appears on the
screen while the game is not being played). The
game must also be instantly addictive. A game that
fails on either count will soon be removed by the
arcade owner in favour of a more profitable
machine. Although Missile Command is now past
its peak in the arcade, for a time it was highly
successful. The version available for the Atari
machines bears witness to its former glory.

The scenario of the game is both simple and
subtle. The player is put in the position of the
commander of an anti-missile station during a
nuclear war and must protect six cities from
destruction by exploding nuclear anti-missiles in
the path of the incoming warheads. This is
designed to appeal to both the megalomania and
gallantry latent in a ‘shoot-em-up’ games addict —
whether, in an arcade or at home.

In play, the screen shows a cross-section view v of
the action, depicting the six cities and a pyramid
structure in.the centre with the anti-missiles ready
for launch. The tracks of the incoming missiles
then appear from the top of the screen. The player
moves a cross around the screen with the joystick.
The cross is positioned in the path of the incoming
missiles and, by pressing the fire button, an anti-
missile is launched from the player's missile base.
This explodes at the co-ordinates of the cross,
destroying all of the incoming missiles within
range of the explosion.

However, a number of the enemy missiles have
multiple warheads that Split into several tracks,
each of which can destroy a whole city. The game is
further complicated by the appearance of low-
flying enemy aircraft and satellites, all capable of
releasing waves of missiles. Points are awarded for
the destruction of enemy aircraft and missiles. At
the end of an attack wave, a pictogram shows the

660 THE HOME COMPUTER ADVANCED COURSE

MINUTE
ended ber of cities you hav:

r of anti-missiles fom annihilation and
hat you have left.
As the player progresses through the various

‘evels of the game, the attacking missiles begin to
move faster and the number of warheads they split
into increases. At this point it is necessary to
develop an overall strategy, rather than simply
picking off each missile separately. The player may
choose, for example, to lay down a ‘barrage’ of
anti-missiles, which will explode in a line and with
luck destroy the wave in one swoop.

The game is further complicated at the higher
levels by the appearance of parachute-borne
warheads. These are extremely difficult to destroy:
if your missile explodes slightly off-target, it is
likely to be ‘blown’ out of the way (presumably on
the updraught), and therefore a successful missile
needs to be exploded directly on top of one of
these.

Throughout the game, you must remember that
you have only a limited number of anti-missiles
(30 for the first level) and if these are squandered
you have to look cn helplessly as the enemy
rockets annihilate the missile base and the cities.

Each level consists of two separate attack
waves, after which the score is computed. Like
other Atari games, it is possible to ‘skip’ to a higher
level of the game. Each level is distinguished by
different foreground and background colours.
The game ends when ail six cities are destroyed,
and this intrinsically pessimistic conclusion is
reinforced by a final screen displaying a suitably
apocalyptic explosion and the words “THE END”.

For the Atari computers, the game is available
on cartridge, and comes with a large colour
brochure that easily outclasses the documentation
supplied with most other games software. The
booklet gives detailed descriptions on how to set
up the game, point-scoring and hints on methods
of play, as well as colour illustrations.

|| Atari computers, £9.99
ation UK, Ltd, Atari House,

F Berkshire

| ar
leysticks RE
Format: Cartridge

LIZ DIXON

: : CEE EEE EEE EERE REESE - SESE Sy

The indicated bts
piace the [000] in
NeADD setabove

tes as INC. -

